首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4028篇
  免费   298篇
  国内免费   5篇
工业技术   4331篇
  2023年   45篇
  2022年   44篇
  2021年   122篇
  2020年   113篇
  2019年   126篇
  2018年   221篇
  2017年   196篇
  2016年   201篇
  2015年   184篇
  2014年   243篇
  2013年   503篇
  2012年   236篇
  2011年   303篇
  2010年   304篇
  2009年   228篇
  2008年   135篇
  2007年   101篇
  2006年   67篇
  2005年   18篇
  2004年   37篇
  2003年   33篇
  2002年   42篇
  2001年   35篇
  2000年   44篇
  1999年   28篇
  1998年   20篇
  1997年   28篇
  1996年   24篇
  1995年   28篇
  1994年   29篇
  1993年   32篇
  1992年   25篇
  1991年   19篇
  1990年   13篇
  1989年   17篇
  1988年   15篇
  1985年   22篇
  1984年   32篇
  1983年   26篇
  1982年   27篇
  1981年   39篇
  1980年   29篇
  1979年   34篇
  1978年   35篇
  1977年   25篇
  1976年   45篇
  1975年   26篇
  1974年   22篇
  1973年   27篇
  1972年   12篇
排序方式: 共有4331条查询结果,搜索用时 31 毫秒
11.
12.
Understanding the batch-to-glass conversion process is fundamental to optimizing the performance of glass-melting furnaces and ensuring that furnace modeling can correctly predict the observed outcome when batch materials or furnace conditions change. To investigate the kinetics of silica dissolution, gas evolution, and primary foam formation and collapse, we performed X-ray diffraction, thermal gravimetry, feed expansion tests, and evolved gas analysis of batch samples heated at several constant heating rates. We found that gas evolving reactions, foaming, and silica dissolution depend on the thermal history of the batch in a similar manner: the kinetic parameters of each process were linear functions of the square root of the heating rate. This kinetic similarity reflects the stronger-than-expected interdependence of these processes. On the basis of our results, we suggest that changes in furnace operating conditions, such as firing or boosting, influence the melting rate less than what one would expect without consideration of batch conversion kinetics.  相似文献   
13.
14.
15.
Effective Co/Cu, CoB/Cu, and CoBM (M = Mo,Zn,Fe)/Cu catalysts were prepared on the copper surface by a simple electroless deposition method using a morpholine borane as a reducing agent in the glycine solution. The activity of the deposited catalysts was investigated for hydrogen generation from an alkaline sodium borohydride solution. It was determined that these synthesized catalysts demonstrated the catalytic activity for the hydrolysis reaction of NaBH4. The lowest obtained activation energy (EA) of the hydrolysis reaction of NaBH4was 27 kJ mol?1 for the CoBMo/Cu catalyst. The hydrogen generation rate of 15.30 ml min?1 was achieved using CoBMo/Cu catalysts at 313 K and it increased ~3.5 times with the increase of temperature to 343 K. The highest hydrogen generation rate obtained by CoBMo/Cu films may be related to the hierarchical cauliflower-shaped 3D structures and the high roughness surface area. Moreover, the CoBMo/Cu catalyst showed an excellent reusability.  相似文献   
16.
Ammonia appears to be a potential alternative fuel that can be used as a hydrogen vector and fuel for gas turbines and internal combustion engines. Chemical mechanisms of ammonia combustion are important for the development of ammonia combustion systems, but also as a mean of investigation of harmful NOx emissions, so they can be minimized. Despite of large body of experimental and modelling work on the topic of ammonia combustion, there is still need for additional investigation of combustion kinetics.The object of this work is further numerical study of ammonia combustion chemistry under conditions resembling industrial ones. After literature review, three mechanisms of ammonia combustion that also include carbon chemistry are used for simulation of experimental premixed swirl burner with the aim of evaluating their performance. San Diego mechanism, that was also the most detailed one, proved to be the best in terms of emissions, but neither one of the models was able to accurately reproduce CO emission after equivalence ratio went beyond 0.81. It was also observed that oxygen is excessively consumed. This study contributes to the current knowledge by providing new insights in ammonia burning conditions closely resembling those in industrial applications, and consequently is expected that insights obtained will help in the design of real industrial burning systems.  相似文献   
17.
We present the results of a life-cycle assessment (LCA) for the manufacturing and end-of-life (EoL) phases of the following fuel-cell and hydrogen (FCH) technologies: alkaline water electrolyser (AWE), polymer-electrolyte-membrane water electrolyser (PEMWE), high-temperature (HT) and low-temperature (LT) polymer-electrolyte-membrane fuel cells (PEMFCs), together with the balance-of-plant components. New life-cycle inventories (LCIs), i.e., material inputs for the AWE, PEMWE and HT PEMFC are developed, whereas the existing LCI for the LT PEMFC is adopted from a previous EU-funded project. The LCA models for all four FCH technologies are created by modelling the manufacturing phase, followed by defining the EoL strategies and processes used and finally by assessing the effects of the EoL approach using environmental indicators. The effects are analysed with a stepwise approach, where the CML2001 assessment method is used to evaluate the environmental impacts. The results show that the environmental impacts of the manufacturing phase can be substantially reduced by using the proposed EoL strategies (i.e., recycled materials being used in the manufacturing phase and replacing some of the virgin materials). To point out the importance of critical materials (in this case, the platinum-group metals or PGMs) and their recycling strategies, further analyses were made. By comparing the EoL phase with and without the recycling of PGMs, an increase in the environmental impacts is observed, which is much greater in the case of both fuel-cell systems, because they contain a larger quantity of PGMs.  相似文献   
18.
Magnesium, as a biodegradable metal, offers great potential for use as a temporary implant material, which dissolves in the course of bone tissue healing. It can sufficiently support the bone and promote the bone healing process. However, the corrosion resistance of magnesium implants must be enhanced before its application in clinical practice. A promising approach of enhancing the corrosion resistance is deposition of bioactive coating, which can reduce the corrosion rate of the implants and promote bone healing. Therefore, a well-designed substrate-coating system allowing a good control of the degradation behavior is highly desirable for tailored implants for specific groups of patients with particular needs. In this contribution, the influence of coating formation conditions on the characteristics of potentiostatically electrodeposited CaP coatings on magnesium substrate was evaluated. Results showed that potential variation led to formation of coatings with the same chemical composition, but very different morphologies. Parameters that mostly influence the coating performance, such as the thickness, uniformity, deposits size, and orientation, varied from produced coating to coating. These characteristics of CaP coatings on magnesium were controlled by coating formation potential, and it was demonstrated that the electrodeposition could be a promising coating technique for production of tailored magnesium-CaP implants.  相似文献   
19.
Alumina based particles were prepared from aluminium chloride hydroxide as starting material by sol-gel technique. One series of particles was doped with ferrous oxide. Both series of particles were calcinated at three different temperatures: 700?°C, 800?°C and 900?°C. Poly(methyl methacrylate), PMMA, was used as a matrix and two different types of alumina based particles were added into the matrix to form the composites. All composites consisted of 3?wt% of alumina based particles. The aim of this study was to examine whether and how the temperature of particle calcination affects the microhardness and mechanical properties of the composite. The particles were characterized by the X-ray diffraction (XRD) and physical absorption methods. The morphology of the composites was examined using a field emission scanning electron microscope (FESEM). The microhardness of composites was measured using a traditional Vickers hardness (HV) method. The mechanical characteristics of obtained composites were determined using tensile test and impact testing.  相似文献   
20.
Kokol  Peter  Blažun Vošner  Helena  Završnik  Jernej 《Scientometrics》2020,125(3):2827-2832

Simultaneous inventions and Sleeping papers are two interesting phenomena in scientific discovery and knowledge development processes, however they were not yet researched as a single occurrence. To close this gap, we performed a bibliometric study in which we analysed if simultaneous discoveries can also be subjected to delayed recognition. The analysis was performed on four already identified nursing Sleeping Papers and resulted in one Sleeping simultaneous invention. Sleeping simultaneous inventions or partially sleeping inventions may represent a valuable source for improved understanding about knowledge development processes and are worth candidates for future research.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号